JPDAF Based HMM or Real-Time Contour Tracking
نویسندگان
چکیده
Tracking objects using multiple cues yields more robust results. The well-known hidden Markov model (HMM) provides a powerful framework to incorporate multiple cues by expanding its observation. However, a plain HMM does not capture the inter-correlation between measurements of neighboring states when computing the transition probabilities. This can seriously damage the tracking performance. To overcome this difficulty, in this paper, we propose a new HMM framework targeted at contour-based object tracking. A joint probability data association filter (JPDAF) is used to compute the HMM’s transition probabilities, taking into account the intercorrelated neighboring measurements. To ensure real-time performance, we have further developed an efficient method to calculate the data association probability via dynamic programming, which allows the proposed JPDAF-HMM to run comfortably at 30 frames/sec. This new tracking framework not only can easily incorporate various image cues (e.g., edge intensity, foreground region color and background region color), but also offers an on-line learning process to adapt to changes in the scene. To evaluate its tracking performance, we have applied the proposed JPDAF-HMM in various realworld video sequences. We report promising tracking results in complex environments.
منابع مشابه
Parametric contour tracking using unscented Kalman filter
This paper presents an efficient method to integrate various spatial-temporal constraints to regularize the contour tracking. Specifically, the global shape prior, contour smoothness and object dynamics are addressed. First, the contour is represented as a parametric shape, based on which a causal smoothness constraint can be developed to exploit the local spatial constraint. The causality natu...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملTracking and beamforming for multiple simultaneous speakers with probabilistic data association filters
In prior work, we developed a speaker tracking system based on an extended Kalman filter using time delays of arrival (TDOAs) as acoustic features. While this system functioned well, its utility was limited to scenarios in which a single speaker was to be tracked. In this work, we remove this restriction by generalizing the IEKF, first to a probabilistic data association filter, which incorpora...
متن کاملTracking and Far-Field Speech Recognition for Multiple Simultaneous Speakers
In prior work, we developed a speaker tracking system based on an extended Kalman filter using time delays of arrival (TDOAs) as acoustic features. While this system functioned well, its utility was limited to scenarios in which a single speaker was to be tracked. In this work, we remove this restriction by generalizing the IEKF, first to a probabilistic data association filter, which incorpora...
متن کاملPeople Tracking with Heterogeneous Sensors using JPDAF with Entropy Based Track Management
In this paper we study the problem of tracking an arbitrary number of people with multiple heterogeneous sensors. To solve the problem, we start with a Bayesian derivation of the multiple-hypothesis tracking (MHT), and, under certain assumptions, we arrive to the joint probabilistic data association filter (JPDAF). In their original derivation, both the MHT and JPDAF assume a multiple sensor sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001